Aerospace Engineering Project Report On APPLICATION OF REDUCED ORDER MODELING TECHNIQUES...

APPLICATION OF REDUCED ORDER MODELING TECHNIQUES TO PROBLEMS IN HEATCONDUCTION, ISOELECTRIC FOCUSING AND DIFFERENTIAL ALGEBRAIC EQUATIONS

Abstract: This thesis focuses on applying and augmenting `Reduced Order Modeling' (ROM) techniques to large scale problems. ROM refers to the set of mathematical techniques that are used to reduce the computational expense of conventional modeling techniques, like finite element and finite difference methods, while minimizing the loss of accuracy that typically accompanies such a reduction. The first problem that we address pertains to the prediction of the level of heat dissipation in electronic and MEMS devices. With the ever decreasing feature sizes in electronic devices, and the accompanied rise in Joule heating, the electronics industry has, since the 1990s, identified a clear need for computationally cheap heat transfer modeling techniques that can be incorporated along with the electronic design process. We demonstrate how one can create reduced order models for simulating heat conduction in individual components that constitute an idealized electronic device. The reduced order models are created using Krylov Subspace Techniques (KST). We introduce a novel `plug and play' approach, based on the small gain theorem in control theory, to interconnect these component reduced order models (according to the device architecture) to reliably and cheaply replicate whole device behavior.

The final aim is to have this technique available commercially as a computationally cheap and reliable option that enables a designer to optimize for heat dissipation among competing VLSI architectures. Another place where model reduction is crucial to better design is Isoelectric Focusing (IEF) - the second problem in this thesis - which is a popular technique that is used to separate minute amounts of proteins from the other constituents that are present in a typical biological tissue sample. Fundamental questions about how to design IEF experiments still remain because of the high dimensional and highly nonlinear nature of the differential equations that describe the IEF process as well as the uncertainty in the parameters of the differential equations. There is a clear need to design better experiments for IEF without the current overhead of expensive chemicals and labor. We show how with a simpler modeling of the underlying chemistry, we can still achieve the accuracy that has been achieved in existing literature for modeling small ranges of pH (hydrogen ion concentration) in IEF, but with far less computational time. We investigate a further reduction of time by modeling the IEF problem using the Proper Orthogonal Decomposition (POD) technique and show why POD may not be sufficient due to the underlying constraints.

The final problem that we address in this thesis addresses a certain class of dynamics with high stiffness - in particular, differential algebraic equations. With the help of simple examples, we show how the traditional POD procedure will fail to model certain high stiffness problems due to a particular behavior of the vector field which we will denote as twist. We further show how a novel augmentation to the traditional POD algorithm can model-reduce problems with twist in a computationally cheap manner without any additional data requirements.

You can also Subscribe to AeronauticalProjects by Email for more such Projects and Seminar.

Keywords: Engineering, Aerospace, Mathematics, Chemistry, Biochemistry, Differential Algebraic Equations, Heat dissipation electronic devices, Isoelectric Focusing, Krylov Subspace Theory, Proper Orthogonal Decomposition, Reduced Order modeling.

Download File

Aeronautical Engineering Theses on Autonomous Target Recognition and Localization

Autonomous Target Recognition and Localization for Manipulator Sampling Tasks
This is a Aeronautical Engineering Theses
Abstract on Project: Future exploration missions will require autonomous robotic operations to minimize overhead on human operators. Autonomous manipulation in unknown environments requires target identification and tracking from initial discovery through grasp and stow sequences. Even with a supervisor in the loop, automating target identification and localization processes significantly lowers operator workload and data throughput requirements. This thesis introduces the Autonomous Vision Application for Target Acquisition and Ranging (AVATAR), a software system capable of recognizing appropriate targets and determining their locations for manipulator retrieval tasks.

AVATAR utilizes an RGB color filter to segment possible sampling or tracking targets, applies geometric-based matching constraints, and performs stereo triangulation to determine absolute 3-D target position. Neutral buoyancy and 1-G tests verify AVATAR capabilities over a diverse matrix of targets and visual environments as well as camera and manipulator configurations. AVATAR repeatably and reliably recognizes targets and provides real-time position data sufficiently accurate for autonomous sampling.

You can also Subscribe to AeronauticalProjects by Email for more such Projects and Seminar.

Keywords: Engineering, Aerospace


Aerospace Engineering Project On Axisymmetric Inlet Design for Combined Cycle Engines

Axisymmetric Inlet Design for Combined Cycle Engines

Abstract of Project: This project Report is all about the Performance considerations for a turbine-based combined-cycle engine inlet are presented using the inlet of the Lockheed SR-71 as a baseline. A numerical model is developed using the axisymmetric method of characteristics to perform full inviscid flow analysis, including any internal shock reflections. Self-starting characteristics are quantified based upon the Kantrowitz limit. The original SR-71 inlet is analyzed throughout the designed self-starting regime, beginning at Mach 1.7 and ending with the shock-on-lip condition at Mach 3.2.

The characteristics model is validated using computational fluid dynamics. A series of modifications are then considered for their ability to extend the range of the inlet into the hypersonic flight regime. Self-starting characteristics of these new designs are also characterized; results indicate that two new designs can maintain self-starting capability into the Mach 6-7 range. Full external and internal flow properties of the new designs are determined using the characteristics model. Mach number, total pressure ratio, temperature, pressure and mass flow properties (and their levels of distortion) are quantified at the inlet exit plane for all cases considered.

You can also Subscribe to AeronauticalProjects by Email for more such Projects and Seminar.

Keywords: Engineering, Aerospace inlet; combined cycle; propulsion; aerodynamics;

Download

Wide-Field Integration Of Optic Flow Project For Aerospace Engineering

Bio-Inspired Information Extraction In 3-D Environments Using Wide-Field Integration Of Optic Flow

Abstract on Project: A control theoretic framework is introduced to analyze an information extraction approach from patterns of optic flow based on analogues to wide-field motion-sensitive interneurons in the insect visuomotor system. An algebraic model of optic flow is developed, based on a parameterization of simple 3-D environments. It is shown that estimates of proximity and speed, relative to these environments, can be extracted using weighted summations of the instantaneous patterns of optic flow. Small perturbation techniques are utilized to link weighting patterns to outputs, which are applied as feedback to facilitate stability augmentation and perform local obstacle avoidance and terrain following.

Weighting patterns that provide direct linear mappings between the sensor array and actuator commands can be derived by casting the problem as a combined static state estimation and linear feedback control problem. Additive noise and environment uncertainties are incorporated into an offline procedure for determination of optimal weighting patterns. Several applications of the method are provided, with differing spatial measurement domains. Non-linear stability analysis and experimental demonstration is presented for a wheeled robot measuring optic flow in a planar ring. Local stability analysis and simulation is used to show robustness over a range of urban-like environments for a fixed-wing UAV measuring in orthogonal rings and a micro helicopter measuring over the full spherical viewing arena. Finally, the framework is used to analyze insect tangential cells with respect to the information they encode and to demonstrate how cell outputs can be appropriately amplified and combined to generate motor commands to achieve reflexive navigation behavior.

Keywords: Engineering, Aerospace, Engineering, Robotics, Bio-inspired Navigation, Insect Vision, Obstacle Avoidance, Optic Flow, Tangential Cells, Wide-Field Integration.

You can also Subscribe to AeronauticalProjects by Email for more such Projects and Seminar.

Aerospace Engineering Project On Augmented Reality for Space Applications

Augmented Reality for Space Applications

Abstract On Project: The Future space exploration will inevitably require astronauts to have a higher degree of autonomy in decision-making and contingency identification and resolution. Space robotics will eventually become a major aspect of this new challenge, therefore the ability to access digital information will become crucial for mission success. In order to give suited astronauts the ability to operate robots and access all necessary information for nominal operations and contingencies, this thesis proposes the introduction of In-Field-Of-View Head Mounted Display Systems in current Extravehicular Activity Spacesuits. The system will be capable of feeding task specific information on request, and through Augmented Reality technology, recognize and overlay information on the real world for error checking and status purposes The system will increase the astronaut's overall situational awareness and nominal task accuracy, reducing execution time and human error risk.

The aim of this system is to relieve astronauts of trivial cognitive workload, by guiding and checking on them in their operations. Secondary objectives of the system will be the introduction of electronic checklists, and the ability to display the status of the suit and surrounding systems as well as interaction capabilities. Features which could be introduced are endless due the nature of the system, allowing extreme flexibility and future evolution without major design changes. This work will focus on the preliminary design of an experimental Head Mounted Display and its testing for initial evaluation and comparison with existing information feed methods. The system will also be integrated and tested in the University of Maryland Space Systems Laboratory MX-2 experimental spacesuit analogue.

Keywords: Engineering, Aerospace Engineering, Aerospace Augmented Reality; Virtual Reality; Head Mounted Display; Vision Sensing

For more updates on Projects via E-mail or Sms Subscribe to www.aeronauticalprojects.blogspot.com

Donate To Maintain

Dear Readers, Donate at-least INR (1/-) on your visit. So, That serves me to maintain this Blog.

Followers